

PH5: From Field to Archive

Outline

Introduction to PH5
Tools Available In Field
From Raw Data to Archive
The PH5 Web Interface at the DMC
PH5 In The Future
Questions and Answers

What is PH5?

PH5 is a data archiving format based on the Hierarchical Data Format version 5 originally developed by the National Center for Supercomputing Applications.

A single format that can hold both raw data and metadata from a variety sources and output it in SEG-Y, SAC, and other future data formats on the fly.

Why PH5?

Freely Available and Open Source
Extensible and Future Proof
Fast and Reliable
Full Data Set is Archived
Metadata and Data Are Fully Separated
Gathers Can be Quickly Generated (and Regenerated)

All of Your RAW Data
Experiment Metadata
Station/Receiver Metadata
Source Metadata
Report

Experiment Metadata

PI Names
Institutions
Assembled ID
Network Code
Experiment Name and Nickname
Brief Description of the Experiment
Bounding Coordinates of the Experiment

Station/Receiver Metadata

Station ID
Datalogger Serial Number
Channel Number
Array Number
Deploy Time
Pickup Time
Latitude, Longitude, and Elevation

*Possibly Optional: Datalogger type, sensor type, sensor serial

Source Metadata

Source ID Latitude, Longitude, Elevation Source Time

Optional (Depending on Source Type)
Source size
Unit of Measure for Size(kg, lbs, etc)
Depth
Top of Column
Bottom of Column

Field Tools: The Kitchen Suite

The Kitchen Software Suite includes:

PForma: Raw Data to PH5

Experiment_t-gen: Experiment Description Metadata

Noven: Format Station and Event Metadata in KEF format

Geod2kef: Calculate Source-Receiver Offsets

Time-kef-gen: Texan Time Correction PH5View: Quickly Look at Gathers

PH5toseg and PH5tosac: Output Your Data

Linux or Mac (CentOS 7 Recommended) Modern Multi-Core Processor Highly Recommended Python 2.7

HDF5

Epel-release-noarch (if using CentOS)

PIP 6.0.8 or Higher (if using CentOS)

Complete list of requirements at: http://jasper.passcal.nmt.edu/wiki/

Switching Gears: Creating a PH5 Archive in the Field

Step 1: PForma

Create list of Raw files

[root@localhost Raw_Data]# ls -d -1 \$PWD/*.* > trd_list

Note: There are many ways to create a list of raw files. Choose your favorite, but ensure that each line contains the full path to the file.

KEF Files: Kitchen Exchange Format

A KEF file is a plain text file that is used to load metadata into PH5.

Tools exist to create the various KEF files you will need to create a complete PH5 archive.

```
/Experiment_g/Sorts_g/Event_t
        id s = 5001
        description_s =
        time/ascii_s = Mon Nov 24 04:25:00 2014
        time/epoch_l = 1416803100
        time/micro_seconds_i = 0
        time/type_s = BOTH
        location/X/value_d = 21.86500666
        location/X/units_s = degrees
        location/Y/value_d = -18.41244766
        location/Y/units_s = degrees
        location/Z/value_d = 995.702
        location/Z/units_s = meters
        location/coordinate_system_s = geodetic
        location/projection_s = none
        location/ellipsoid_s = WGS84
        location/description_s = 5001
        size/value_d = 1000
        size/units_s = lbs
        depth/value_d =
        depth/units_s = meters
```

Experiment_t-gen

Generate Experiment Metadata

Save as kef file

Run kef2ph5 to Load Generated kef

[field@dhcp-25 ~]\$ kef2ph5 -n master -p /path/to/ph5 -k experiment_t.kef

Receiver and Shot Metadata

Receiver and Shot Metadata are Saved in CSV Format

						_										_	
station	serial	lat	lon	elevation	Channel	Array	Deploy	Pickup	Shot	lat		lon	elev	time	size	unit	depth
1001	12997	8.64808	-71.85546	57	1	L 1	2015:320:00:00.00	2015:321:00:00.00	5202		33.80847	-83.55728	225	2015:219:03:20:00.020	273	ka	16
1002	13919	8.64698	-71.85546	56.81	1	L 1	2015:320:00:00.00	2015:321:00:00.00	5203		33 69766	-83.49372	194	2015:219:07:20:00.020		_	18
1003	11891	8.64625	-71.85493	56.61	1	1 1	1 2015:320:00:00.00	2015:321:00:00.00	5204			-83.39242		2015:219:05:50:00.020		kg	22
1004	13971	8.64549	-71.85435	56.33	1	1 1	1 2015:320:00:00.00	2015:321:00:00.00								_	
1005	14094	8.64478	-71.85378	55.86	1	1 1	1 2015:320:00:00.00	2015:321:00:00.00	5205			-83.29161		2015:219:08:51:00.020		kg	17
1006	12945	8.64409	-71.85323	55.43	1	L 1	1 2015:320:00:00.00	2015:321:00:00.00	5206			-83.12384		2015:220:03:00:00.020		kg	19
1007	12394	8.64329	-71.85276	55.51	1	1 1	1 2015:320:00:00.00	2015:321:00:00.00	5207		32.83597	-82.89922	102	2015:220:04:10:00.020	182	kg	17
1008	11590	8.64212	-71.85288	54.84	1	1 1	1 2015:320:00:00.00	2015:321:00:00.00	5208		32.69918	-82.92459	75	2015:220:05:10:00.020	182	kg	19
1009	12545	8.64043	-71.85354	55.2	1	1 1	1 2015:320:00:00.00	2015:321:00:00.00	5209		32.47656	-82.80255	59	2015:220:06:18:00.020	364	kg	21
1010	12870	8.63791	-71.85376	55.55	1	. :	1 2015:320:00:00.00	2015:321:00:00.00	5210		32.35993	-82.71048	55	2015:220:05:05:00.020	182	kg	12
									5212		31.84319	-82.42969	68	2015:220:03:05:00.020		kg	19
										_							

Noven

Save the kef and Run:

field\$ kef2ph5 -n master -p /path/toph5 -k Array_1_t.kef

field\$ kef2ph5 -n master -p /path/toph5 -k Event_t.kef

Note: You need to run kef2ph5 for every array in your experiment

Geod2kef

Used to calculate the offset distance between sources and receivers. Geod2kef creates an offset kef file to be loaded into the PH5 Archive

field\$ geod2kef -n master -p /path/to/ph5 > offset_t.kef

field\$ kef2ph5 -n master -k offset_t.kef

Time-kef-gen

Time-kef-gen is used only for Texan(RT125A) RAW data. Time-kef-gen will calculate the timing-drift corrections for the RT125A RAW data and create a kef file to be loaded into the PH5 Archive.

field\$ time-kef-gen -n master -p /path/to/ph5 > time_t.kef

field\$ kef2ph5 -n master -k time_t.kef

PH5View

Easily Check Metadata

Quickly View Shot Gathers

Fast Basic QC Before Creating SEG-Y

PH5toSeg

Allows you to quickly create SEG-Y shot gathers using a variety of parameters.

To get SEG-Y gathers of all events simply run:

[field@dhcp-25 PH5Viewer]\$ ph5toseg -n master -p /path/to/ph5 -E -l 60 -o /output_directory

```
Options:
 -h, --help
                      show this help message and exit
 -e event_number, --eventnumber=event_number
 -E, --allevents
 -s start_time, --starttime=start_time
 -A, --all
 -t stop_time, --stoptime=stop_time
 -a array, --array=array
 -l length, --length=length
 -0 offset, --offset=offset
 -n nickname, --nickname=nickname
 -p ph5_path, --ph5path=ph5_path
 -c channel, --channel=channel
 -N, --notimecorrect
 -d decimation, --decimation=decimation
 -f format, --format=format
 -o out_dir, --out_dir=out_dir
 -C, --check_tables
 exists for a station.
 -D das_sn, --das=das_sn
 -S station, --station=station
 -Y doy_keep, --doy=doy_keep
                      Comma separated list of julian days to extract.
 -r sample_rate, --sample_rate_keep=sample_rate
 -V red vel, --reduction velocity=red vel
                      Fill SEG-Y headers with UTM instead of lat/lon.
 -x extended_header_style, --extended_header=extended_header_style
                      Extended trace header style:
                      'P' -> PASSCAL,
                                                            'S' -> SEG,
                      'U' -> Menlo USGS,
                                                               'I' ->
                      Scripts SIOSEIS Not implemented,
                      'N' -> iNova Firefly Not implemented
 --ic
 --break_standard
```

Convert ph5 file to standard SEG-Y.

Switching Gears: PH5 Web Interface

The Website: http://ds.iris.edu/pic-ph5/

09-006 HLP3CPiggyBack-RT130

10-001 BATHOLITHS

10-005 USACROSS

Unrestricted Get Report

Unrestricted Get Report

Unrestricted Get Report

The Main Interface

Form

Map

Help

The form below is for requesting subsets of the experiment data. If you would like to request ALL of the data in SAC format please click the following link: I want to request the full data set in SAC format

ALCUDIA-WA

The fields below will be used to track your request and are all required.

nover over input fields below for fielp.								
Name:								
Institution:								
Your E-MAIL:								
LABEL:								

Ramon Carbonell

CSIC-Institut de Ciencies de la Terra Jaume Almera

The proposed project aims to place strong constraints in the distribution of the physical properties (P and S seismic wave velocities) in the upper mantle beneath the CIZ.

Show/Hide Events Export as CSV

The fields below specify your request. An asterisk (*) indicates required field.

Use the column to the right to select the data you would like to request. It will automatically be placed into the form when you click on what you want in the tables to the right.

Click the array number to add it to the form. Clicking rows in the station table will add them to the form

Array: 001

Sample Rate: 250

Deploy Time: 2012:126:00:00:00 Pickup Time: 2012:133:23:59:00 Show/Hide Stations Export as CSV

Map View

The map tab can be used to get a quick view of the experiment geometry.

Clicking on any point will bring up metadata about the receiver or shot.

The Main Form Fields Autofilled!

ID	Time	Latitude	Longitude	Elevation(m				
1	2012:128:12:59:55.000	38.44839	-5.46017	576.0				
2	2012:129:12:00:14.000	38.75269	-4.92534	551.0				
3	2012:130:12:00:16.000	39.37725	-4.68685	629.0				
4	2012:131:12:00:14.000	39.9021	-4.46484	514.0				
5	2012:132:11:00:12.000	40.4551	-4.04072	634.0				
Click the array number to add it to the form. Clicking rows in the station table will add them to the form								

Array: 001

Sample Rate: 250

Deploy Time: 2012:126:00:00:00
Pickup Time: 2012:133:23:59:00
Show/Hide Stations Export as CSV

Submit Request-Receive Data

Below is the live output of the processing log.

You can close this page at anytime.

2015-12-07 15:14:14,250 Offset: 130732 m Azimuth: 24.359186 degrees

2015-12-07 15:14:14,324 Gain: 32 Bitweight: 5.96046e-08 volts/count

2015-12-07 15:14:14,325 Component: Z Azimuth: 0.0 degrees Dip: -90.0 degrees

2015-12-07 15:14:14,325 Clock: Start Epoch: 01336123843.000 End Epoch:

01336909319.000

2015-12-07 15:14:14,325 Clock: Offset: -0.0252304 seconds Slope: -3.21212e-08

2015-12-07 15:14:14,326 Sample rate: 250 Number of samples: 15000

2015-12-07 15:14:14,330 Wrote: 15000 samples with 0 sample padding.

2015-12-07 15:14:14,331 733

PH5 In The Future

PH5tomseed (2016)

New PH5 Website (Early 2016)

Integrated Web Services (Early 2016)

Integrated Field Tool (Mid 2016)

New Data Formats: Input and Output (As Community Need Arises)

dhess@passcal.nmt.edu

software@passcal.nmt.edu